

Le dimensionnement des installations solaires pour les piscines collectives

www.solaire-collectif.fr

Programme

- 1- Contexte des travaux SOCOL
- 2- Conception d'installations dédiées aux piscines collectives
- 3- Retours d'expérience
- 4- Échanges

Intervenants

Laetitia Brottier

DualSun

Philippe Papillon

En Butinant l'Energie

Guillaume Pradere

EKLOR

Edwige Porcheyre

Enerplan

1. CONTEXTE DES TRAVAUX

Edwige Porcheyre Enorplan

Enerplan

ENERPLAN

- Créé en 1983
 - Représentatif de la filière solaire en France
 - Des membres sur l'ensemble de la chaîne de création de valeur (TPE, PME, PMI, grands groupes, institutionnels…)
- Deux missions principales
 - Représenter les professionnels et défendre leurs intérêts
 - Animer, structurer et développer la filière solaire française
- Chaleur et électricité
 - PV : bâtiment et énergie
 - ST: individuel et collectif (animation de l'initiative SOCOL)

SOCOL

- SOCOL pour « solaire collectif » : depuis 12 ans !
 - Initiative ENERPLAN engagée en 2009
 - Avec le soutien initial de l'ADEME, et de GRDF depuis 2013
- Les acteurs de la filière mobilisés
 - Près de 3000 membres
 - Experts du ST collectif et maîtres d'ouvrage
- Développer la chaleur solaire collective
 - Diffuser les bonnes pratiques
 - Donner les clefs pour réussir son projet en solaire thermique collectif

LES TRAVAUX SOCOL

- Un groupe de travail initié en 2020
 - Soutenu par l'ADEME et GRDF
 - Coordination technique assurée par Philippe Papillon

• Production d'un livret technique publié début 2021

LE LIVRET SOCOL

- Réalisé en s'appuyant sur l'expérience des acteurs de la filière
 - Philippe BAUDUIN, Alturan
 - Nadine BERTHOMIEU, ADEME
 - Pierre GERRER, INES Plateforme Formation & Évaluation
 - Moran GUILLERMIC, Atlansun
 - Eric MAYNADIE, SOLEVAL
 - Daniel MUGNIER, TECSOL
 - Jean-Marie NOUGARET, Giordano Industries
 - Alexandre PAUVERT, CD2E
 - Guillaume PERRIN, FNCCR
 - Guillaume PRADERE, EKLOR

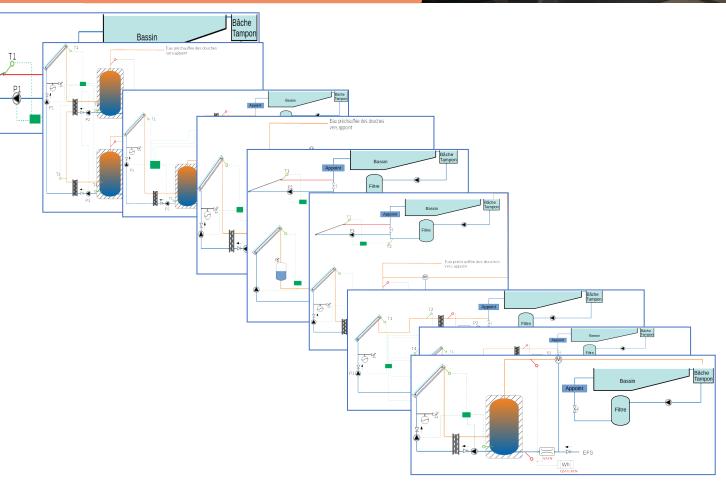
LE LIVRET SOCOL

Objectif

Fournir des clefs pour l'utilisation de l'énergie solaire thermique au service des piscines.

Moyens

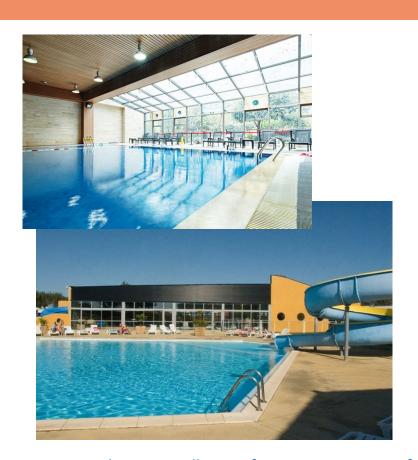
- Retours d'expériences / bilans énergétiques : différentes typologies.
- Analyses des besoins / différentes technologies : schémas adaptés.
- Répertorisation des points de vigilance


2. CONCEVOIR UNE INSTALLATION

Philippe Papillon

En Butinant l'Energie

La chaleur solaire, une réponse adaptée aux besoins en eau chaude des piscines collectives


- Préparation d'un livret technique dédié aux piscines
 - Typologie de piscine
 - Les besoins thermiques des piscines
 - Les technologies de capteurs adaptés aux piscines
 - Tableau de sélection du schéma adapté

En préalable, quelques chiffres clés ...

- 16.000 piscines collectives accueillent chaque année 25 millions de baigneurs.
 - Piscines municipales, d'hôtels, de camping, de résidence de vacances, etc.
- Piscines couvertes : 1500 à 3000 kWh/m² de plan d'eau
 - dont près de 400 kWh/m² pour compenser les pertes thermiques des bassins
 - o près de 50 kWh/m² pour l'eau chaude sanitaire
- Piscines de plein-air : 100 à 500 kWh/m² de plan d'eau

Source : <u>www.lapiscinecollective.fr</u>, <u>www.vm-piscines.fr</u>

Une autre façon de voir

Les **piscines publiques** (toutes piscines confondues) représentent un peu plus de **10% des consommations énergétiques des collectivités locales** (EPCI et communes) : cela correspond à **60 kWh/an.habitant** (l'équivalent d'une quarantaine de douches) et près de **5€/habitant** .

Les piscines sont généralement les équipements qui pèsent le plus lourd dans le budget "énergie" des collectivités.

Source : Dépenses énergétiques des collectivités locales - État des lieux en 2017 - ADEME, IN NUMERI, 2019. 97 pages.

https://www.ademe.fr/resource-archive/348990

Les piscines et les usages thermiques de l'énergie

 Piscine de plein air à utilisation estivale avec ou sans équipements ludiques

Les usages de l'énergie thermique sont destinés :

- A réchauffer le bassin au début de la saison
- A maintenir la température du bassin au cours de la saison pour compenser les pertes thermiques et réchauffer l'eau de renouvellement
- A réchauffer l'eau chaude sanitaire des douches.

Source : Ville de Montmélian

Les piscines et les usages thermiques de l'énergie

 Piscine couverte avec une utilisation « 4 saisons » avec ou sans équipements ludiques

Dans les piscines couvertes, les usages de l'énergie thermique sont destinés :

- A chauffer les locaux
- A déshumidifier l'air ambiant pour maintenir le confort et éviter les condensations
- A maintenir la température du bassin au cours de la saison pour compenser les pertes thermiques et réchauffer l'eau de renouvellement
- A réchauffer l'eau des bassins suite aux vidanges règlementaires
- A réchauffer l'eau chaude sanitaire des douches.

Le chauffage des locaux et la déshumidification de l'air ambiant ne seront pas traités dans ce livret.

Source : Ville de Hazebrouck

Les piscines et les usages thermiques de l'énergie

Bain nordique

Les bains nordiques sont une catégorie particulière qui, au regard des consommations énergétiques, occupent une place à part. En effet, la température est généralement plus élevée que pour les piscines (de l'ordre de 32 à 35°C), et ils sont généralement utilisées en extérieur et en période hivernale ...

Tout est donc réuni pour que les consommations énergétiques soient élevées...

Spas

Les spas ne sont pas inclus dans cette catégorie. Ces derniers font l'objet de règlementation sanitaire, notamment en ce qui concerne le renouvellement d'eau [9].

Source : Ville de Puy Saint Vincent

Les postes de consommation

- Trois postes de consommation pris en compte
 - L'eau chaude sanitaire pour les douches
 - L'eau de renouvellement des bassins
 - Le réchauffage des bassins.

L'eau chaude sanitaire des douches

L'évaluation des besoins

- Ratio préconisé : consommation d'eau chaude de 15 l/baigneur à 40°C, soit de l'ordre de 8 l/baigneur à 60°C.
- Dans le cadre des piscines existantes, il est fortement recommandé de s'appuyer sur le relevé des consommations d'eau chaude des douches.

Réglementation

- Arrêté du 1er février 2010 relatif à la surveillance des légionelles dans les installations de production, de stockage et de distribution d'eau chaude sanitaire,
- Arrêté du 30 novembre 2005 modifiant l'arrêté du 23 juin 1978 relatif aux installations fixes destinées au chauffage et à l'alimentation en eau chaude sanitaire des bâtiments d'habitation, des locaux de travail ou des locaux recevant du public

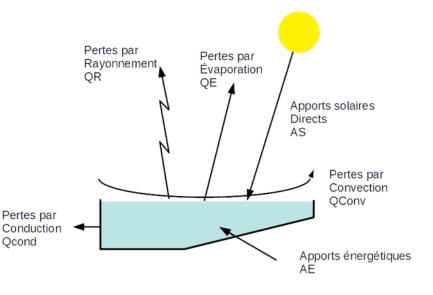
L'eau de renouvellement des bassins

Réglementation

- Réglementairement, un renouvellement de 30l/baigneur est obligatoire.
- Un apport de 50 litres/baigneur est généralement recommandé par les Agences Régionales de Sante.
- En pratique, et selon les typologies de piscine et les systèmes de traitement d'eau mis en place, le renouvellement atteint jusqu'à 120 l/baigneur de façon à répondre aux exigences sanitaires. Ce volume d'eau de renouvellement doit être consigné dans le carnet sanitaire de la piscine

Préconisation

- Equipement neuf, prévoir un renouvellement de 30l/baigneur.
- Equipement existant, prévoir un renouvellement égal à 60% du renouvellement actuel (optimisation des équipements de traitement d'eau), avec un minimum à 30 l/baigneur.



Le réchauffage des bassins

- Compenser les pertes thermiques du bassin
 - Pas de ratio spécifique compte-tenu de la diversité des situations
 - Une annexe du livret indique les différentes formules de calcul pour l'évaluation des pertes
 - Pour les piscines découvertes, il y a également lieu de prendre en compte la mise en température en début de saison.
- Les températures des bassins

Type de bassin	Température de l'eau recommandée
Bassin d'apprentissage	27°C
Bassin de compétition	25°C
Pataugeoire	30°C
Bassin de loisirs	24 à 29°C
Bassin thérapeutique	29 à 35°C
Fosse de plongée	27 à 32°C

Le réchauffage des besoins : un exemple

Contexte

- Piscine ouverte du 1er juin au 30 septembre, situé à Orléans.
- Dimension du bassin : 25 x 7 m²
- Volume = 262 m³
- Température de consigne = 26°C.
- Fréquentation : entre 50 et 100 baigneurs/jour,
- Consommation d'eau pour les douches = 15 l/baigneur à 40°C
- Renouvellement d'eau = 50 l/baigneur.

Le réchauffage des besoins : un exemple

Bassin														
Profondeur	1.50	m	Surface	175.00	m²									
Largeur	7.00	m	Volume	262.50	m3									
Longueur	25.00	m												
Couverture	8.00	h/jour		Résistan	ce thermid	ue couver	ture	0.05	m²°C/W					
Station		Orléans		-		Situation	O Int	érieur	● Ext	érieur				
Site protégé du ven	t_					Tem péra	ature	27.00	°C (si inte	erieur)				
● Oui Non														
			F,										D.	T. 1
Météo		Jan	Fév	Mar	Avr		Jun	Jul		Sep	Oct	Nov	Déc	Total
Nombre jour ouverture		0	0	0	0	0	30	31	31	30	0	0	0	122
Temp piscine	°C	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00
Temp air	°C	2.80	3.70	7.10	9.90	13.30	16.70	18.60	18.40	15.80	11.10	6.60	3.70	10.64
Humidité relat	%	87.00	83.00	76.00	70.00	71.00	73.00	71.00	73.00	76.00	83.00	87.00	89.00	78.25
Vitesse vent	m/s	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Enso (plan horizontal)	kWh/m².j	1.15	1.83	3.00	4.46	5.66	6.11	5.53	4.75	3.89	2.37	1.25	0.83	1244.53
Temp eau froide	°C	7.00	7.00	8.00	11.00	13.00	15.00	16.00	16.00	15.00	13.00	11.00	8.00	11.67
Renouvellement eau	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Le réchauffage des besoins : un exemple

Besoins sans couv	verture													
Evaporation	kWh	0	0	0	0	0	21082	20337	20097	21331	0	0	0	82847
Convection	kWh	0	0	0	0	0	7125	5858	6016	7814	0	0	0	26813
Rayonnement	kWh	0	0	0	0	0	11658	10554	10628	12241	0	0	0	45081
Parois	kWh	0	0	0	0	0	429	352	362	470	0	0	0	1613
Renouvellement	kWh	0	0	0	0	0	0	0	0	0	0	0	0	0
Apports solaires	kWh	0	0	0	0	0	-28870	-27000	-23192	-18380	0	0	0	-97442
Total	kWh	0	0	0	0	0	11423	10101	13911	23476	0	0	0	58912
Besoins avec couv	erture													
Evap / Conv / Rayo	kWh	0	0	0	0	0	31457	28810	28848	32768	0	0	0	121882
Parois	kWh	0	0	0	0	0	429	352	362	470	0	0	0	1613
Renouvellement	kWh	0	0	0	0	0	0	0	0	0	0	0	0	0
Apports solaires	kWh	0	0	0	0	0	-28870	-27000	-23192	-18380	0	0	0	-97442
Total	kWh	0	0	0	0	0	3016	2162	6018	14858	0	0	0	26053

Le bilan thermique de la piscine

Sans couverture thermique

	Juin	Juillet	Aout	Sept.	Saison
Nombre baigneurs (/jour)	50	100	100	50	
Température extérieure moyenne (°C)	16.7	18.6	18.4	15.8	
Irradiation moyenne sur plan horizontal	6.11	5.53	4.75	3.89	
(kWh/m².jour)					
Besoins bassins (kWh)	11423	10101	13911	23476	58911
Besoins ECS (kWh)	653	1295	1295	653	3896
Besoins renouvellement (kWh)	957	1798	1798	957	5510
% bassins	88%	77%	82%	94%	86%
% ECS	5%	10%	8%	3%	6%
% renouvellement	7%	14%	11%	4%	8%

- 86 % dédié au réchauffage du bassin
- Ratio de 350 kWh/m² de bassin

Le bilan thermique de la piscine

Avec couverture thermique (8h/jour)

	Juin	Juillet	Aout	Sept.	Saison
Nombre baigneurs (/jour)	50	100	100	50	
Température extérieure moyenne (°C)	3016	2162	6018	14858	26054
Irradiation moyenne sur plan horizontal	653	1295	1295	653	3896
(kWh/m².jour)					
Besoins bassins (kWh)	957	1798	1798	957	5510
Besoins ECS (kWh)	65%	41%	66%	90%	73%
Besoins renouvellement (kWh)	14%	25%	14%	4%	11%
% bassins	21%	34%	20%	6%	16%
% ECS	50	100	100	50	
% renouvellement	3016	2162	6018	14858	26054

- 73 % dédié au réchauffage du bassin
- Ratio de 150 kWh/m² de bassin

Quel type de capteurs solaires pour les piscines ?

- Capteurs non vitrés
- Capteurs PVT
- Capteurs plans
- Tubes sous vide
- Capteurs non vitrés + PAC
- Capteurs PVT + PAC

Proposition de schémas hydrauliques en fonction des usages adressés et du type de piscine

ECS	Réchauffage eau	Réchauffage bassin	Piscine de plein air	Piscine couverte avec		
	de renouvellement			utilisation « 4 saisons » et/ou		
				bain nordique		
		X	Schéma 1.A			
	X			Schéma 2.A		
X		X		Schéma 3.A		
^		^	Schéma 3.A1			
X	X		2	Schéma 4.A		
	^		<u>S</u>	chéma 4.A1		
			Schéma 5.A			
X	X	X	Schéma 5.A1			
			Schéma 5.A2			

Le livret ne traite pas de la seule production d'eau chaude sanitaire : se référer aux autres documents SOCOL.

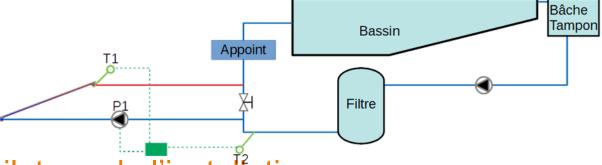
Une fiche par schéma

Contenu de la fiche

- Champ d'application du schéma
- Schémas
- Mode de fonctionnement y compris pilotage de l'installation
- Typologie de capteurs adaptés
- Eléments de dimensionnement pour les composants clés (capteurs, échangeurs, ...)
- Points forts, points de vigilance, spécificités

Objectifs des fiches

- Fournir un exemple de schéma. De multiples variantes pertinentes peuvent exister en fonction du contexte : typologie de piscine, équipement neuf ou existant, mutualisation avec d'autres équipements, système d'appoint, ...
- Donner des éléments techniques et des garde-fous
- Mais les fiches ne sont pas obligations ou des vérités absolues : le recours à un professionnel compétent est indispensable



Un exemple : Schéma 1A

- Champ d'application du schéma
 - Réchauffage des bassins des piscines de plein air avec capteurs non vitrés ou PVT
- Schémas

- Mode de fonctionnement y compris pilotage de l'instalfation
 - Le montage est en circuit direct sur l'eau des bassins. Le circuit capteur solaire est piloté par un régulateur différentiel qui met en service la pompe P1 en fonction des températures T1 et T2.
 - Un appoint peut être monté en série après le solaire pour assurer le complément d'énergie.

Un exemple : Schéma 1A

Typologie de capteurs adaptés

Capteurs non	Capteur PVT	Capteur plans	Tubes sous	Capteurs non	Capteurs PVT
vitrés			vide	vitrés + PAC	+ PAC
\checkmark	\checkmark	*	×	×	*

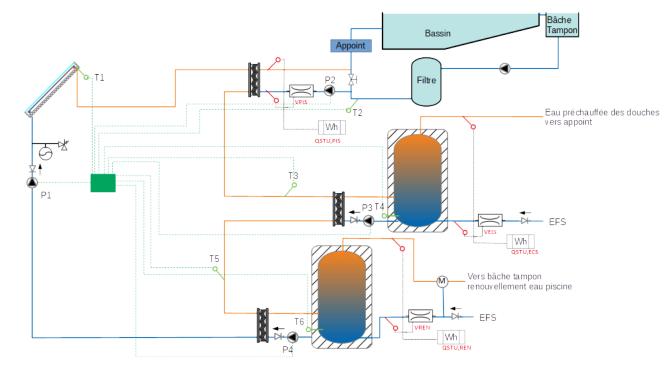
- Eléments de dimensionnement pour les composants clés
 - Pour ce type d'installations, un dimensionnement sommaire du champ de capteurs (capteurs non vitrés) est compris entre 30 (Sud de France) et 100% (Nord de France) de la surface des bassins en fonction des conditions climatiques.
 - En l'absence d'appoint, un dimensionnement plus important du champ de capteurs pourra être mis en œuvre : cette augmentation de surface permettra d'accélérer la montée en température du bassin en début de saison, et d'augmenter la durée d'utilisation et/ou le confort de baignade.
- Points forts, points de vigilance, spécificités

Points forts	Point de vigilance
Schéma très simple	Tenue des composants du circuit solaire à la qualité d'eau de la piscine
Pas de risque de surchauffe des capteurs	Possibilité de vidanger totalement l'installation pour la période hivernale

Un autre exemple : Schéma 5A

- Champ d'application du schéma
 - Pour les piscines « 4 saisons » ou pour les piscines de plein air adapté pour le réchauffage de l'eau des douches, de l'eau de renouvellement des bassins et pour le réchauffage du bassin

Un autre exemple : Schéma 5A



Schémas

Ce schéma est une variante possible. De nombreuses autres variantes pourront être mises en œuvre, notamment :

- Sur la boucle solaire : système sous pression ou autovidangeable
- Sur la partie eau chaude sanitaire : système en eau technique, prise en charge du réchauffage du bouclage, ballon avec échangeur immergé en remplacement de l'échangeur à plaques
- Sur la partie eau de renouvellement : système en eau technique, ballon avec échangeur immergé en remplacement de l'échangeur à plaques

Pour ces différents sous-ensembles, on pourra se référer à la schémathèque SOCOL et/ou aux livrets spécifiques dédiés au bouclage sanitaire et aux installations en eau technique.

Un autre exemple : Schéma 5A

Typologie de capteurs adaptés

Capteurs non vitrés	Capteur PVT	Capteur plans	Tubes sous vide	Capteurs non vitrés + PAC	Capteurs PVT + PAC
*	×	✓	×	✓	✓

• Points forts, points de vigilance, spécificités

Points forts	Point de vigilance
Schéma polyvalent	Prendre en compte des risques de surchauffe éventuel en saison, ou en dehors de la saison d'ouverture de la piscine.
	Echangeur de piscine compatible avec l'eau de piscine

Les outils de calcul

- Evaluation des besoins thermiques des piscines
 - o ThermExcel: Sous forme de feuille de calcul Excel: https://www.thermexcel.com/french/program/piscine.htm
 - Logiciels Perrenoud : « U44Win Calcul des Piscines » : http://www.logicielsperrenoud.com/catalog/u44win-calcul-des-piscines/
- Calcul des performances d'une installation solaire thermique
 - SOLO 2018 : Pas très adapté, mais peut permettre d'avoir une évaluation des performances pour les installations où le solaire thermique adresse les besoins d'eau chaude des douches et/ou des besoins d'eau de renouvellement. Pour le réchauffage des bassins, SOLO 2018 n'est pas spécifiquement adapté : http://solo2018.tecsol.fr/
 - Calsol Piscine : outil simplifié en ligne qui permet d'évaluer les besoins énergétiques des piscines, ainsi que de calculer les apports solaires thermiques d'une installation solaire : http://ines.solaire.free.fr/piscine 1.php
 - T.SOL: permet de calculer les besoins d'une piscine ainsi que les performances de l'installation solaire associée. Une trentaine de schémas intègre une piscine: https://www.valentin-software.de/fr/produits/tsol
 - PolySun : dispose de configurations avec piscine : https://www.velasolaris.com/polysun/?lang=en

Synthèse

- Document généraliste
 - Des informations sur les besoins énergétiques des piscines
 - Des propositions d'intégration du solaire thermique
- Objectifs
 - Donner des clés de faisabilité

3. RETOURS D'EXPÉRIENCE

Laetitia Brottier

DualSun

Guillaume Pradere

EKLOR

Edwige Porcheyre

Enerplan

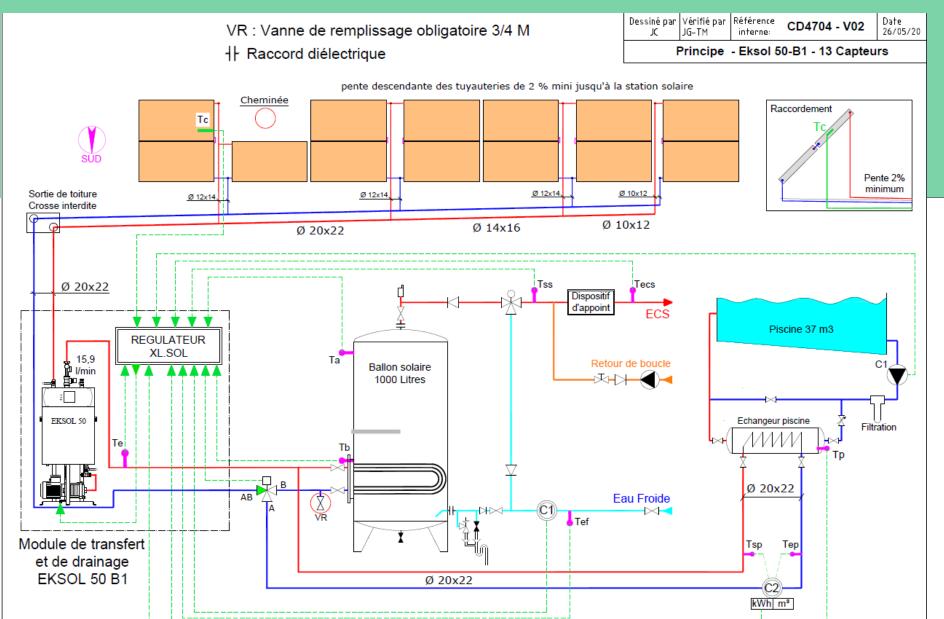
Retour d'expérience

Centre balnéothérapie – La chaussée Saint Victor (41)

Guillaume Pradere

EKLOR

Centre balnéothérapie


La chaussée Saint Victor (41)

- Données du projet :
 - Piscine couverte de 37 m³
 - Température consigne de la piscine = 32°C
 - Ouverture toute l'année
 - Besoin chauffage piscine estimée* = 41 400 kWh/an (1148 kWh/m³/an)
 - Appoint chauffage gaz
- Installation solaire :
 - Technologie : EKLOR autovidangeable
 - Schéma hydraulique : production ECS + chauffage piscine
 - Surface capteur : 30 m² (13 x 2,3)
 - Inclinaison capteur : 45°

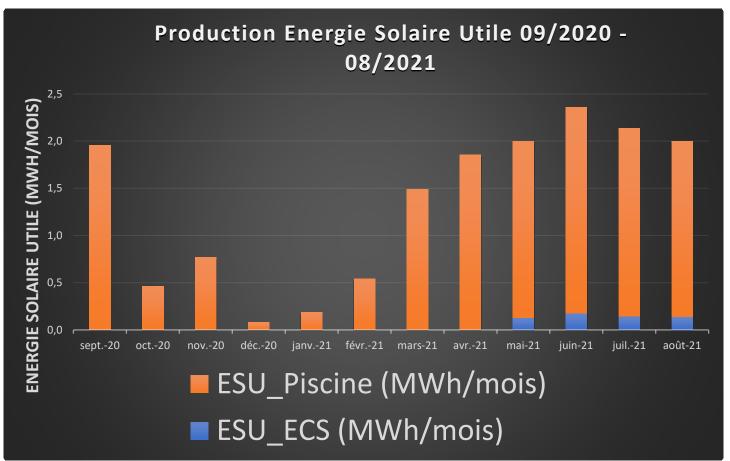
Pilotage de la vanne 3 voies selon température de consigne du ballon solaire.



Centre balnéothérapie

La chaussée Saint Victor (41)

- Suivi de l'installation :
 - Mise en service 25/06/2020
 - Comptage énergie :
 - Compteur sur production eau chaude sanitaire
 - Compteur sur production chauffage piscine
 - Suivi installation via plateforme EKLOR WebSol I/O

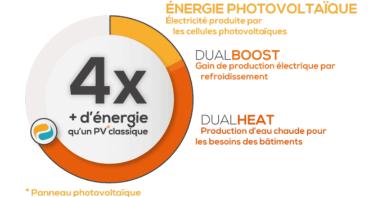

Centre balnéothérapie

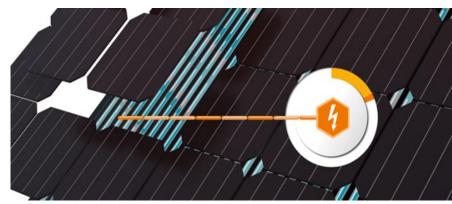
La chaussée Saint Victor (41)

• Performance de l'installation :

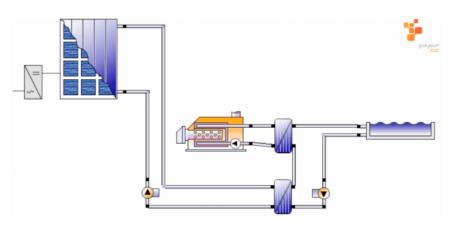
- Consommation moyenne ECS à 60°C (mai 2021 – Aout 2021) = 220
 L/jour
- Stratégie pilotage = favoriser le chauffage de la piscine
- Bilan de production sur 1 an
 - ESU_ECS = 0,590 MWh
 - ESU_Piscine* = 15,235 MWh
 - ESU_totale = 15,824 MWh
 - Productivité = 531 kWh/m²

^{* 37%} de besoins annuels de la piscine


Le solaire hybride PVT en piscine collective



Laetitia Brottier DualSun


Le solaire hybride PVT en piscine collective

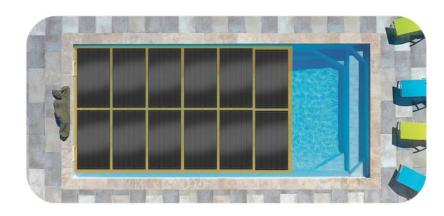
• Piscine collective : principe

- Les piscines ont des consommations électriques très importantes du fait des nombreux appareils électriques nécessaires à leur fonctionnement ou à leur chauffage. Elles ont donc une forte empreinte écologique.
- Nos panneaux Spring permettent de réchauffer l'eau des bassins et offrir des douches chaudes grâce à leur échangeur thermique en face arrière. En plus, bien sûr, de l'électricité photovoltaïque

La chaleur produite par la face arrière des panneaux Spring réchauffe l'eau des piscines. Particulièrement pertinents lorsqu'il s'agit de chauffer des piscines, les panneaux DualSun Spring offrent de très bonnes performances thermiques car ils sont d'autant plus efficaces lorsque les températures de fonctionnement sont basses.

La production électrique des panneaux Spring va être autoconsommée et permettre d'effacer les consommations de la piscine, notamment pour les différents systèmes de pompes, de filtration ou d'éclairage et éventuellement injecter le surplus de production sur le réseau.

Grâce à l'important stock d'eau que constitue la piscine, les panneaux Spring sont mieux refroidis et produisent jusqu'à 15% d'électricité supplémentaire par rapport à une installation photovoltaïque classique.


Dimensionnement PVT en piscine collective



PRODUCTION ANNUELLE Productivité énergétique (kWh/m²/an) x taille de l'installation (m²)

Zone H1 (Paris)	Thermique (kWh/m²/an)	240
	PV (kWh/m²/an)	195
Zone H2 (Lyon)	Thermique (kWh/m²/an)	300
	PV (kWh/m²/an)	215
Zone H3 (Marseille)	Thermique (kWh/m²/an)	400
	PV (kWh/m²/an)	275

Surface de panneaux à poser

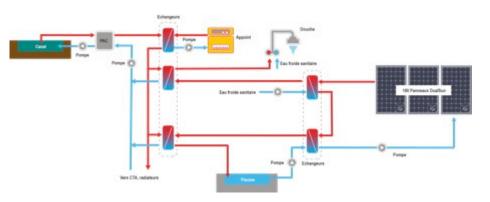
INVESTISSEMENT (lot solaire clé en main en €HT)					
		100 m²	300 m²	1 000 m²	2 000 m²
CAPEX	Prix fourni-posé estimé	850 €/m²	650 €/m²	600 €/m²	550 €/m²
OPEX	Maintenance P2 (annuelle)	7 €/m²/an	5 €/m²/an	4 €/m²/an	3 €/m²/an

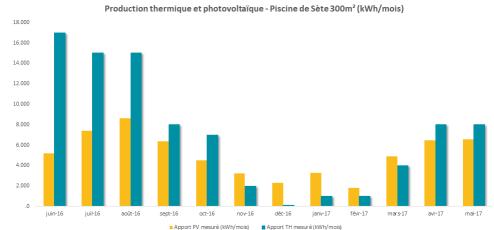
Piscine collective (pressurisée)

Centre aquatique de Sète (34)

•MOA : Ville de Sète

•Exploitant (CPE) : DALKIA


•Nombre de panneaux : 180 DualSun Wave 250M non isolés (45kWc)


•Production thermique: 86 100 kWh

•Production photovoltaïque: 60 681 kWh/an

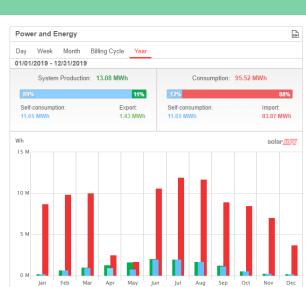
•Prix fourni-posé (hors ombrière) : 300k€ soit 1 000 €/m²

•Prix de revient de l'énergie (eau chaude + électricité) : ~10c€/kWh sur 20 ans

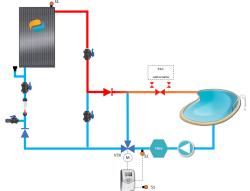
Piscine collective (directe)

Centre aquatique de Villé (67)

•Nombre de panneaux : 48 DualSun Spring 280M non isolés (13,44 kWc)


•Production thermique (juin à août 2019) : 42 491 kWh

•Production photovoltaïque: 13 080 kWh/an


•Prix fourni-posé (lot solaire) : 59 862 € soit 756 €/m²

•Prix de revient de l'énergie (eau chaude + électricité) : environ 5,4c€/kWh sur 20 ans

•Installateur : Artisans Associés

Piscine collective

Projet en cours

•MOA: Piscine d'Amboise

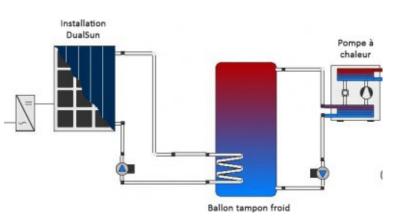
•Nombre de panneaux : 42 DualSun Spring

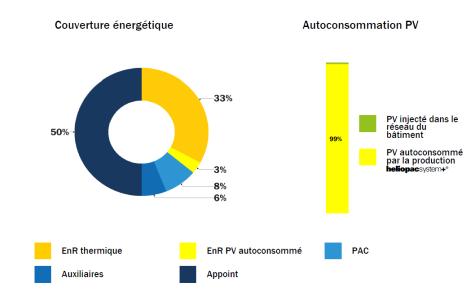
•Année: 2021

•MOA : Piscine de Lapalisse

•Nombre de panneaux : 60 DualSun Spring

•Année: 2021





Couplage PVT + PAC en piscine collective

Piscine collective (HeliopacSystem+)

Piscine Lesaffre (59)

•MOA: Ville de Roubaix (2019)

•Nombre de panneaux : 38 DualSun Spring

•Pompe à chaleur : 2 Solerpac SE410A-14

•Production solaire thermique : 122 MWh/an

•Production photovoltaïque : 12 MWh/an

•Dimensionné pour 50% des besoins

•Installateur : Hydroline

•Exploitant : Engie

Centre aquatique Palestra (52)

•MOA: Ville de Chaumont (2021)

Nombre de panneaux : 96 DualSun Spring

•Pompe à chaleur : 1 Solerpac P-50

•Production solaire thermique : 268 MWh/an

•Production photovoltaïque : 28 MWh/an

•Dimensionné pour 40% des besoins

•Installateur : Hervé thermique

Piscine Les Abrets (38)

•MOA: Ville de Grenoble (2021)

•Nombre de panneaux : 120 DualSun Spring

•Pompe à chaleur : 1 Solerpac P-50

•Production solaire thermique : 277 MWh/an

•Production photovoltaïque : 38 MWh/an

•Dimensionné pour 70% des besoins

•Installateur : Hervé thermique

Les ressources du site SOCOL

Edwige Porcheyre

Enerplan

La chaleur solaire collective performante et durable

Retours d'expérience consultables en ligne

Fiche et vidéos en libre accès sur www.solaire-collectif.fr

Consultez des dizaines de fiches technico-économiques

Visionnez différents témoignages

La piscine municipale de Carros (06)

- ✓ 228 m² de capteurs
- √ 750 I stockage + 4 000 I tampon
- ✓ 1 100 m3 par an de besoins
- ✓ Couvre 37% des besoins

RESULTATS ATTENDUS

Besoins annuels (kWh/an)	~ 400 000 kWh/an
Productivité solaire (kWh/an)	~ 150 000 kWh/an
Réduction d'énergie finale (kWh/an)	~ 180 000 kWh/an
Taux de couverture des besoins	37%

DONNÉES ÉCONOMIQUES

Coût total du bâtiment	ND (bâtiment existant)
Coût total de l'installation solaire	170 000 € HT
Montant des aides à l'investissement	136 000 € HT
Economie financière annuelle*	6 175 €
Temps de retour sur investissement**	6,5 ans

^{*} au coût de l'énergie actuel

■ IMPACT SUR L'ENVIRONNEMENT

Quantité de CO2 évitées pa	n 37 tonnes de CO2 par an
200110100000000000000000000000000000000	

Typologie: Usages ECS

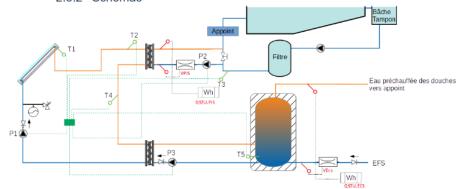
^{**} sans prise en compte de l'inflation énergétique

La piscine municipale de Marly Le Roy (78)

RESULTATS ATTENDUS

Besoins annuels (kWh/an)	610 000
Productivité solaire (kWh/an)	330 000 (440 000 apport électrique compris)
Réduction d'énergie finale (kWh/an)	488900
Taux de couverture des besoins	71%

■ IMPACT SUR L'ENVIRONNEMENT


Quantité de CO2 évitées par an	44 tonnes
Qualitite de COZ evitees pai all	1 tollics

Typologie : Schéma 3A

2.3 Schéma 3.A

2.3.1 Champ d'application du schéma Réchauffage des bassins et production d'eau chaude sanitaire pour les douches.

2.3.2 Schémas

✓ 200 m² de capteurs

✓ 2 500 l de stockage

La piscine municipale d'Aixe sur Vienne (87)

RESULTATS ATTENDUS

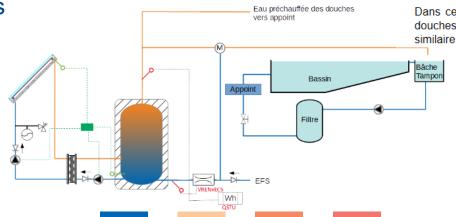
Besoins annuels (kWh/an)	307 000 kWh (mesures GRS 2011)
Productivité solaire (kWh/an)	43 000 kWh (mesures GRS 2011)
Réduction d'énergie finale (kWh/an)	72 000 (gaz sur PCI)
Taux de couverture des besoins	14%

■ IMPACT SUR L'ENVIRONNEMENT

Quantité de CO2 évitées par an

Typologie : Schéma 4A

- √ 60 m² de capteurs
- ✓ 2 x 1500 l de stockage
- ✓ 6 200 m3 par an de besoins
- ✓ Couvre 14% des besoins


2.5 Schéma 4.A

2.5.1 Champ d'application du schéma

Réchauffage de l'eau de renouvellement des bassins et production d'eau chaude sanitaire pour les douches.

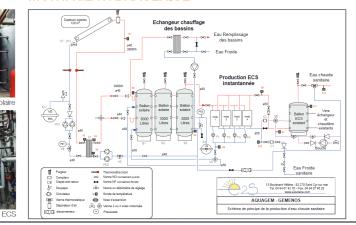
2.5.2 Schémas

Dans ce cas, il s'agit de réchauffer un volume d'eau chaude qui sera disponible pour les douches et lors de l'opération de renouvellement d'eau du bassin. Dès lors, le schéma est similaire à une production d'eau chaude sanitaire.

La piscine municipale de Gémenos (13)

CARACTÉRISTIQUES TECHNIQUES

Mise en service le 14 janvier 2013, l'installation comprend **120m2** de capteurs installés en **toiture terrasse**.


L'orientation des capteurs, de type Sonnenfraft GK10-HP, est sud/sud-ouest (azimut 205).

Les capteurs sont inclinés à 30°. Le volume de stockage solaire est de 9000 L. Avec une énergie d'appoint au gaz, la consommation d'ECS annuelle prévue était de 11.6m3/jour, la consommation réelle n'est que de 1.5 à 5m3/jour.

Typologie : Schéma 4A

MONTAGE HYDRAULIQUE

Vidéo: interview de M Schneider

Directeur des Services Technique

Ville de Gémenos

LA RÉHABILITATION DE L'INSTALLATION

AQUAGEM

Économies réalisées grâce au solaire thermique

= 4.000 € par an

4. Echanges

Laetitia Brottier

DualSun

Philippe Papillon

En Butinant l'Energie

Guillaume Pradere

EKLOR

Edwige Porcheyre

Enerplan

